
Boot Process

Introduction

There are several things that must happen when you turn on a IBM PC. The purpose of
this document is to describe the PC boot process and a demonstrate the process though
small code samples. It is assumed that the reader is versed in IA-32 assembly language.
By the end of this document, you should be well armed to get the i386 in to full protected
mode and jump to a kernel. All assembly language in this document is in Intel syntax.
The tool required to compile sample code, is Netwide Assembler (NASM)

Overview

When dealing with the IBM PC the one thing that you must be aware of is that it was not
designed in one sitting. Rather is was an architecture that has been added to for the last
20+ years. What this means is that there are many tricks that must be performed by you
the systems designer to get the system in to the state desired. All of this was done to have
backwards compatibility. The good news is once you have got the system set up, its
becomes a much friendlier environment for the systems programmer. The i386 an above
processors provide a very robust set of instructions that deal with protection, multi-
tasking, and virtual memory.

System Startup

When you first turn on the computer the first thing that executes is the BIOS. The
acronym BIOS stands for "Basic Input/Output System". This is software that is
programmed in to a ROM (Read Only Memory) attached to the mother board. The BIOS
provides basic input/output functions as the name implied. The BIOS is what allows a
PC to load an operating system from disk. For more information on the functions that
BIOS provides, please refer to Ralf Browns interrupt list. The physical memory below 1
megabyte has certain parts that map to special purposes. The following table is the
layout.

Start End Description

0x000000 0x0003FF
Real-mode
interrupt
vector table

0x000400 0x0004FF
BIOS data
segment

0x000500 0x09FBFF Free
conventional

http://www.intel.com/
files/rbintlist.zip
http://www.web-sites.co.uk/nasm/

memory

0x09FC00 0x09FFFF
Extended
BIOS data area
(EBDA)

0x0A0000 0x0BFFFF Video memory

0x0C0000 0x0FFFFF
Video and
motherboard
BIOS ROMs

0x100000 0x10FFFF
Hi Memory
Area (HMA)

0x110000 0x???????
Free extended
memory

Once the BIOS has finished everything that it needed to do (i.e. initialize all devices), it
will attempt to load code from the bootable devices assigned in the BIOS configuration.

Floppy Disk

If the BIOS is attempting to boot from a floppy the first thing it will do is load the first
sector on the disk. A sector is 512 bytes in size on a typical floppy disk. This first sector
is called the "Boot Sector". This sector is loaded to the address 0000:0x7C00. At this
point the BIOS gives control to the first instruction located at 0000:07C0. The layout of
the boot sector is laid out in the diagram that follows.

Boot Sector

Boot Code 510 bytes

Signature
 2 bytes (always
0x55AA)

Hard Disk

If the Bios is attempting to boot from a hard drive the first thing it will do is load the first
sector of the disk. A sector is 512 bytes in size on a typical hard drive. This first sector
is called the "Partition Sector" This sector is loaded to the address 0000:07C0. The
difference between a hard disk and a floppy disk is that a hard drive contains a partition
table . This table allows a hard drive to spit up in to sections. This allows multiple
operating systems to co-exist, as each one can only see what is available to that partition.
The layout of the partition sector is layout out in the diagram following.

Partition Sector

Boot Code 446 bytes

Partition Table 64 bytes

Signature
 2 bytes (always
0x55AA)

Partition Table

Offset To
Start of
Sector

Size (Bytes) Content

0x01BE 16 Partition 4

0x01CE 16 Partition 3

0x01DE 16 Partition 2

0x01EE 16 Partition 1

Partition Table Entry

 Offset to
Start of
Sector

 Size (Bytes) Content

0x00 1 Boot Flag (1)

0x01 3
Start of
Partition

0x04 1
System Flag
(2)

0x05 3
End of
Partition

0x08 4

Start Sector
Relative to
Start of Disk
(3)

0x0C 4
Number of
Sectors in
Partition (3)

 (1) 0x80 = Bootable, 0x00 = Non Bootable
 (2) 0 = No DOS FAT, 1=DOS With 12-Bit FAT, 4=DOS With 16 Bit FAT,

5=Extended DOS Partition (DOS 3.30 ff), 6=DOS Partion Larger 32MBytes
(DOS 4.00 ff), etc

 (3) Intel Format Low-High

The Boot loader

The code that was located in the boot sector now has control of the system. Since our
destination is protected mode there are several things that need to be done. I have chosen
to use the two stage boot loader approach. This is where the first loader merely loads the
data files and hands control over to the second boot loader. The reason for this is that
512 (446 on a hard disk) bytes of code is not really enough to do what we need to do.

1st Stage The boot Loader

 (hard drive only, check to ensure the partition table is valid)
 Load kernel from a floppy disk with the FAT12 file system

2nd Stage The OS Loader

 Mask Interrupts
 Shutoff Non-Mask able Interrupts (NMI)
 Load/Create Global Descriptors for Kernel Code, Data, and Stack
 Turn on address line 20 (A20 gate)
 Switch Processor in to Protected mode

Stage 1 The Boot Loader defined

This is the code that is initially loaded in to memory from the BIOS. As a developer of
the boot loader there is no real structure that you "must" follow. Most people find it
reasonable to have the boot load the kernel and get the system running. This is a good
approach when starting out. In the day of DOS, there existed the FAT (File Allocation
Table) file system which has become the most widely used file system to date. The
reason is that its simple to implement. Almost all modern operating systems support
FAT, so its a good idea to make your boot disk fat compatible. This allows your disk to
be used other then just a boot disk. It is also a good file system to get your OS up an
running with. To make your disk readable by another system that supports FAT, you
must include in the boot loader the BPB (Bios Parameter Block). Do not be fooled by the
name of this structure, as it really has nothing to do with the BIOS. Its structure is
defined below:

Description Size (Bytes)

 3 bytes

OEM Name and
Number

 8 bytes

Bytes per Sector 2 bytes

Sectors per Allocation
Unit (Cluster)

 1 bytes

Reserved Sectors (For
Boot Record)

 2 bytes

Number of FATs 1 bytes

Number of Root
Directory Entries

 2 bytes

Number of Logical
Sectors

 2 bytes

Medium Descriptor
Byte (depreciated)

 1 bytes

Sectors Per FAT 2 bytes

Sectors Per Track 2 bytes

Number of Heads 2 bytes

Number of Hidden
Sectors

 2 bytes

To see how this would be laid out in assembly code, here is a snippet of the beginning of
a boot loader.

;---

jmp short main ; Jump over declarations and the BPB to the main
tag

nop
;---

; Next, the BPB (BIOS Parameter Block) for FAT compatability
; The following figures are specific to a 1.44M 3 1/2 inch floppy disk
;---

OEM_Name db 'Halos1.0' ; 8 bytes for OEM Name and
Version
nBytesPerSec dw 0200h ; 512 bytes per Sector
nSecPerClust db 01h ; Sectors per Cluster
nSecRes dw 01h ; Sectors reserved for Boot
Record
nFATs db 02h ; Number of FATs
nRootEnts dw 0E0h ; 0E0h (224) Root Directory
Entries
nSecs dw 0B40h ; Number of Logical Sectors 0B40h
= 2880

; 00h when > 65,535 sectors
mDesc db 0F0h ; Medium Descriptor Byte
nSecPerFat dw 09h ; Sectors per FAT
nSecPerTrack dw 012h ; Sectors per Track
nHeads dw 02h ; Number of Heads
nLogSec0
nSecHidden dd 00h ; Number of Hidden Sectors

The boot loader would then to proceed and load the loader, and possible load the kernel
at this time as well. This is up to what is being attempted. In fact you might not even
need another loader and you might just want to load the kernel and go. Some systems
make the entry point of the kernel the actual loader, and do a lot of initial set up at that

point. If you building a 32-bit operating system I would strongly suggest using a 16 bit
second stage loader, that in turn, once the environment is setup calls the kernel's main
function. It is to the intention of teaching the FAT file system in this document, but it
might be in the future. For now I will consider it an exercise for the reader to get
acquainted with the FAT file system and how to write a FAT file loader.

Stage Two The OS Loader

The only reason to have a second stage in the boot process is to allow you the freedom of
not having to squeze everything that needs to be done in the first stage. If you do not
want to support the FAT file system then you might not need the second loader. The first
boot loader that I wrote, fit well with in the 512 bytes, granted it was a dead disk to all
systems other then a boot disk for my OS (No file system). Each item that was in the
intial list of thing that need to happen on the second stage of the boot process follow:

Mask Interrupts

There are two types of interrupts on the IA-32 platform. The first set is called maskable
interrupts. These are interrupts that can easily be turned off, or masked, by the
processor. The instructions that handles enabling and disabling are CLI and STI, which
stand for clear and set respectively. Maskable interrupts are generated by the PIC
(Primary Interrupt Controller) which is usually an Intel 8259 microprocessor. These
interrupts are used to single the processor of events such as the keyboard, disk I/O, and
timer events. The other type of Interrupt is the non-maskable interrupt These interrupts
normally only occur when a hardware failure occurs and the processor must know. There
is a way to disable these, but this is done in the CMOS of the system. Code is below to
disable both types

; ---
; mask(turn off) maskable interupts
; ---

cli ; we are now done with interrupts
mov al, 11111111b ; select to mask of all irq's
out 0x21, al ; write it to the PIC controller

; ---
; turn off non-maskable interupts
; ---

in al, 0x70 ; read a value
or al, 10000000b ; set the nmi(non maskable interupt)

disable bit
out 0x70, al ; write it back again

Load/Create Global Descriptors for Kernel Code, Data, and Stack

The global descriptor table is how the IA-32 platform handles paging, protection, and
multitasking. To operate in protected mode you must have at least one GDT defined for

code and data. They can overlap. The easiest approach to this is to create the code and
data segments to be 0-4gigabytes in size. This is known as the flat memory model. With
the approach all addresses will be mapped to physical addresses. This is convenient
because there is not paging or memory management available at the instant you go in to
protected mode. To get started use the following GDT definitions. You will notice the
pointer assuming the the GDT will be moved to the location of 0x800. This can be done
with the code snippet following the definitions. And last but not least you must load the
GDT, which I show in the 3 snippet.

;
--

; Pointer to where the GDT will live and the limit
;

--
GDTptr:

dw 17FFh ; limit, 768 slots
dd 0x800 ; base is at 0x800 physical
;

--
; Global Descriptor Table
;

--
gdt:

dw 0,0,0,0 ; dummy descriptor
; code descriptor
dw 0xFFFF ; segment limit bits 15-00
dw 0x00 ; base address bits 15-00
db 0x00 ; base address bits 23-16
db 0x98 ; Present, DPL=00,App/Sys=1

(1001=0x9),code execute only (0x08)
db 0xCF ; Granularity=1,DB=1,0,0 (1100=0xc),

segment limit bits 19-16 (0xF)
db 0x00 ; base address bytes 31-24
; data descriptor
dw 0xFFFF ; segment limit bits 15-00
dw 0x00 ; base address bits 15-00
db 0x00 ; base address bits 23-16
db 0x92 ; Preset, DPL=00,App/Sys=1 (1001=0x9),

data read/write (0x02)
db 0xCF ; Granularity=1,DB=1,0,0 (1100=0xc),

segment limit bits 19-16 (0xF)
db 0x00 ; base address bytes 31-24
; stack descriptor
dw 0xFFFF ; segment limit bits 15-00
dw 0x00 ; base address bits 15-00
db 0x00 ; base address bits 23-16
db 0x92 ; Preset, DPL=00,App/Sys=1 (1001=0x9),

data read/write (0x02)
db 0xCF ; Granularity=1,DB=1,0,0 (1100=0xc),

segment limit bits 19-16 (0xF)
db 0x00 ; base address bytes 31-24

; ---
; relocate the global descriptor table to 0x800

; ---
mov ax,0
mov es,ax ;set segment for indexes
mov di, 0x800 ;to location
mov si,gdt ;from location
mov cx,32 ;32 times
rep movsb ;move byte

; ---
; load the GDT
; ---
lgdt [GDTptr] ; Load the GDT pointer!

Turn on address line 20 (A20 gate)

Once upon a time there were only 20 address lines on the 80x86. Since the processor had
a nice feature of memory wrap around programmers did not worry about using addresses
larger then what was physically available. When the x86 platform needed more address
lines, IBM had the idea of just leaving the A20 line off for compatibilities. IBM found
that the keyboard controller had a free port and decided that this port would be used to
turn on the A20 line if it was desired. This solved the problem of backwards
compatibility. To turn on the A20 line, use the code below.

; ---
; Its time to turn on A20
; ---

xor cx,cx ; set to 0, so loop will decrement to 255
A20step1:

in al,64h ; get data from keyboard controller
test al,02h ; test to see if the buffer is full
loopnz A20step1 ; try 255 times
mov al,0xd1 ; this code tells the control expect a

byte
out 64h,al ; send the code to the controller
xor cx,cx ; again reset the counter

A20step2:
in al,64h ; get data from keyboard controller
test al,02h ; test to see if the buffer is full
loopnz A20step2 ; try 255 times
mov al,0dfh ; here is the code to turn on Gate 20
out 60h,al ; send the code to the controller
xor cx,cx ; again reset the counter

A20step3:
in al,64h ; get data from keyboard controller
test al,02h ; test to see if the buffer is full
jnz A20step3 ; try 255 times
xor cx,cx ; just clean up cx, to 0

Switch to Protected mode

To switch the processor in to protected mode there is only one bit that must be set. That
is bit 0 of control register 1. The GDT register must be populated with a pointer to an
valid GDT at this point for this to be successful. If its not the processor will throw an

exception and since there are no exception handlers it will eventually triple fault and go
in to shutdown mode.

; ---
; switch to protected mode
; ---

mov eax,cr0 ; get the control register 0
or al,1 ; set PE bit
mov cr0,eax ; JUMP!!

; --
; the intel doc states that the pipline is not flushed when
; protected mode is enabled. So we need to manually flush the
; pipeline
; ---

jmp $+1 ; this clears the prefetch queue of any
nop ; 16-bit instructions

At this point you are ready to just to the kernel. You must also ensure all segments are
setup with the new descriptors rather then the 16 bit segments that you were using prior
to the switch to protected mode.

© Copyright 2002 by Christopher DeGuise. All rights reserved.

	Boot Process
	Introduction
	Overview
	System Startup
	Floppy Disk
	Boot Sector

	Hard Disk
	Partition Sector
	Partition Table
	Partition Table Entry

	The Boot loader
	1st Stage The boot Loader
	2nd Stage The OS Loader
	Stage 1 The Boot Loader defined
	Stage Two The OS Loader
	Mask Interrupts
	Load/Create Global Descriptors for Kernel Code, Data, and Stack
	Turn on address line 20 (A20 gate)
	Switch to Protected mode

